Yoga for Stress Management: Psychophysiological Mechanisms, Evidence, and Clinical Implications

Ambadasu Bharatha Lecturer, Department of Precinical Sciences, Faculty of

Medical Sciences, The University of the West Indies,

Bridgetown, Barbados

Vijay Prasad Sangishetti Associate Professor, Department of Pharmacology, SRVS

Govt medical College, Shivpuri, Madhya Pradesh, India.

Lalitha Bhuvanagiri* Assistant Professor, TRR Institute of Medical Sciences,

Patancheru, Hyderabad

Naga Snigdha Syamala Tutor, TRR Institute of Medical Sciences, Patancheru,

Hyderabad

Gurudatta Moharir Associate Professor, Department of Pharmacology, JMF's

ACPM Medical College, Dhule, Maharashtra, India Senior Lecturer, Department of Precinical Sciences, Faculty of Medical Sciences, The University of the West

Indian Dridgatown Parhadan

Indies, Bridgetown, Barbados

Abstract

Subir Gupta

Stress is a contributing factor of cardiometabolic, neuropsychiatric, and inflammatory morbidity via disruptions of hypothalamic-pituitary-adrenal activity, sympathetic drive, and immune imbalance. This review synthesises the evidence considering yoga (integrating the postures, breathwork and meditation into a multimodal intervention) as an intervention that addresses these pathways. Neuroimaging and biomarker studies suggest less amygdala reactivity, more prefrontal control, more insular interoception, regulation of the default mode network, and more brain-derived neurotrophic factor, in keeping with more emotion regulation and neuroplasticity. Autonomic responses reflect elevated heart rate variability, lowered LF/HF ratio, increased baroreflex sensitivity and acute decreases in blood pressure and heart rate. Endocrine: Reduced activity of HPA and reduced diurnal cortisol Immune effects with reductions towards IL-6, TNF-a and CRP and shifts towards regulatory balance Psychologically, yoga decreases perceived stress and negative affect and improves attention and sleep, overall cognitive ability, sleep and coping; effects emerge even after single sessions of meditation, and benefits accrue over time due to regular practice. Implementation should include standardized dosage, screening for safety as well as phenotyped elements (breathing exercises in hyperarousal, focused attention in rumination, dynamicity exercises in cardiometabolic risk), and should be built on stepped-care models and digitally supported delivery. Limitations include the variability of administration, dosage and format, few or poorly conducted active controls and longitudinal mechanistic trials. Taken together, yoga appears to be a multi-target, scalable and low-cost intervention for decreasing stress and improving resilience.

Keywords: yogs, stress management, clinical implecations, psychological.

Introduction

Stress will continue to cause morbidity in cardiometabolic, neuropsychiatric, and inflammatory diseases. The main biological pathways of stress are the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic-adenomedullary axis, and immune-inflammatory downstream pathways. Prolonged dysregulation of these systems results in increased cortisol, autonomic disequilibrium, systemic

^{*}Corresponding Author: lalithabhuvanagi@gmail.com

inflammation, and brain circuitry changes that result in defective resilience and poor health outcomes.(1-3)

Multi-component mind-body practice of yoga incorporating postures (asanas), breathing (pranayama), and meditation (dhyana) has been examined more and more to describe its psychophysiological impact on stress. In comparison to isolated interventions (e.g. exercise-only, meditation-only), yoga is presented in a multimodal form that targets multiple stress pathways at once, including autonomic regulation, endocrine modulation, central neuroplasticity, and immune homeostasis; thus has immediate and long-term effects.(2, 5-7)

This synthesis review is an evidence-based overview of the mechanisms and outcomes of yoga as an antistress physiological factor, enhancing resilience, and informing the clinical practice.

Neurobiological Mechanisms

Brain Structure and Function

Structural and functional alterations in the parts of the brain related to controlling emotions, interoception, and cognitive control are linked to long-term yoga practice. Other structural MRI experiments have demonstrated larger gray matter volume in the prefrontal, insular, hippocampal, temporal, and cerebellal areas of yoga practitioners, where length of practice was found to be an indicator of the extent of practice. Of particular interest is the role of the insula in interoceptive awareness with the aim of enhancing the detection and regulation of bodily stress levels. Functional studies reveal that there is a decrease in amygdala reactivity to negative stimuli and an increase in prefrontal-amygdala connectivity during breath-focused attention as well as increased top-down emotional control, which reinforces the finding of functionality studies.(5, 8, 9)

Connection in the state of meditation and practice of yoga asana enhance prefrontal activation and the efficiency of the network, which probably end up being enhanced executive control, stability of attention and regulation of control over the affect in stressing situations. The body of neuroimaging literature points to a commonality in the yoga practice to modulate the default mode network (DMN), which decreases maladaptive rumination and mind-wandering, that are typical of chronic stress states.(5, 8, 10)

Neurotrophins and Neuroplasticity

Brain-derived neurotrophic factor (BDNF) is an important mediator of synaptic plasticity and mood regulation that is enhanced by yoga and meditation. Three months yoga-meditation retreat increased BDNF by almost three times, and positively changed the immune balance. This result is consistent with the wider literature which demonstrates that mind-body practices result in changes in neuroplastic markers and BDNF. Sustained improvements outside of sessions are likely to be neuroplastic adaptations and may supplement apparent structural changes of the brain.(6, 8, 11-15)

Autonomic and Cardiovascular Adaptations

Heart Rate Variability (HRV) and Autonomic Balance

Yoga is linked with a steady improving HRV index, which means that the parasympathetic (vagal) tone is improved and the sympathetic level diminishes, which are two main attributes of a well-functioning stress-response system. The time-domain (e.g., RMSSD, SDNN) and frequency-domain parameters are enhanced with short-term practice to decrease the LF/HF ratio of tendency to vagal predominance. Pranayama, which is largely based on slow, slow breathing (typically between six and eight breaths/minute), synchronizes the cardiorespiratory variations at the resonant frequency, which enhances vagal control and baroreceptor sensitivity.(7, 16)

Blood Pressure, Heart rate and Acute effects

Acute and chronic effects are experienced. One 30-minute session has clinical significance in the reduction of heart rate and blood pressure showing immediate effects of downregulating stress physiology. Meta-analytic results present decreases in waking/evening cortisol, ambulatory systolic blood pressure, resting, heart rate, and enhanced HF-HRV in different groups of people. It is a combination of action of breath, posture and of attentional regulation of the cardiovascular-autonomic control reflecting these effects.(3, 17)

HPA Axis and Hormonal Modulation

Yoga suppresses hyperactivity of HPA that is the feature of the chronic stress. However, there are positive results of controlled trials indicating a decrease in serum/salivary cortisol with pranayama and mixed yoga programs; children who have gone through 6 months of pranayama demonstrate attenuated cortisol responses to acute stress metrics. Psychological and health benefits including stress and mental health have been also reported in meta-analyses of breathwork, which supports a central role of respiratory control in endocrine downregulation. Yoga can alleviate the metabolic, inflammatory, and affective downstream effects of prolonged exposure to stress by lowering cortisol and diurnal regulation of metabolism and inflammatory balance more broadly.(3, 18-20)

Inflammation and Immune Regulation

Low grade inflammation characterized by high levels of IL-6, TNF-a, CRP biomarkers are the results of chronic stress and are associated with cardiometabolic and neurodegenerative disease. Reviews and meta-analyses point to the fact that yoga lowers the levels of pro-inflammatory cytokines (IL-6, TNF-a) and CRP, and there are uniform salient results in both clinical and non-clinical cohorts. Among the immunological processes are: Th17/Treg homeostasis and lowered inflammatory gene expression, which facilitates immune homeostasis beyond suppression. Greater depths of data of intensive retreats indicate subtle immunologic preparedness, having a coenhanced anti-inflammatory IL-10 and selective upgrading of pro-inflammatory indicators referred to as adaptive ready states as opposed to pathology.(1, 2, 6, 21)

Psychological Outcomes and Cognitive Effects

Yoga leads to less perceived stress, negative affect and better coping, attention, and self-regulation of both healthy and stressed groups. Yoga teaches and supplements psychophysiological measures (HR, BP, HRV) of stress in college students and the two levels of results agree on the same. The elements of mindfulness and training of interoceptiveness decrease rumination and strengthen meta-awareness, strengthening meta-awareness results in adaptive appraisal and regulation of emotions. Cognitive impairments reduce among practitioners, which is advantageous to structural-functional improvements of prefrontal regions.(5, 8, 22)

Acute versus Chronic Benefits

Single sessions of acute studies indicate immediate attenuation of HD, BP, and cortisol, and consolidated autonomic balance, endocrine take part, immune reorganization and neuroplastic transformation with longer practice. This two time-course justifies yoga as both an acute stressor (exam, pre-procedural anxiety) and long term resiliency-building during routine practice.(17, 18, 23)

Population-Specific Considerations

Students and young adults: Will prove useful in academic stress, sleep quality and attentional control with similar physiological improvements.

Clinical populations: Improvements in chronic pain, cardiometabolic risk, inflammatory conditions, and mood benefit, which partially depend on improvements in BDNF and cytokine levels, respectively.(2, 24)

Older adults: Regulatory benefit and connectivity are noted; changes and safety adjustments are necessary due to mobility and cardiovascular concerns, which must be considered and adapted.(5, 25)

Pragmatic Implementation

Protocol Design and Standardization Protocols and Standards

The style of yoga and the dosing of yoga is heterogeneous, which makes it hard to synthesize and translate. Based on the reviewed methodology, standardized modules addressing defined frequency, intensity, structure of the sessions, safety screening, instructor qualifications, and outlined main outcomes are suggested. Breaking down the effect of asana, pranayama, and meditation using component analyses would allow specifically prescribing to individual stress phenotypes (e.g., hyperarousal vs. cognitive rumination).

Safety, Screening and Progression

Yoga is not associated with risks, except the musculoskeletal strains, and in some rare instances, the worsening of certain psychiatric symptoms. Among the best practices, there are preparticipation screening, gradual progressions, postures adjustment, and close supervision of high-risk individuals. Practices of breathing ought to be progressive; there must be no excessive breath retention in the cardiovascular or pulmonary susceptibility areas.

Integration in to Care Pathways

Two complementary yoga occurs as a part of stepped-care stress management which includes CBT, ACT as well as lifestyle medicine. To implement validated protocols in primary care, mental care, and cardiac rehab, workforce development (i.e., cross-training of clinicians and authorized yoga therapists), specific referral requirements, and outcome quality (e.g., HRV, PSQ/PSS, sleep measurements) will be needed. Digital presentation can increase access but without compromising fidelity of breath pacing, sequencing and attentional guidance.(25, 26)

Limitations of Current Evidence and Future Directions

Heterogeneity: Diversity in styles, dose, training of instructors and outcome measures reduces the meta-analytic accuracy and the specificity of guidelines.

Controls: Active control conditions (e.g., stretching, aerobic exercise, relaxation training) have not been used extensively, which limits causal attributions of yoga specific components.(3)

Mechanisms: Multi-omic, multi-modal designs of the central-peripheral pathways (fMRI/EEG + HRV + cortisol + cytokines + BDNF) will elucidate the mechanistic chains and moderators.(2, 5, 6)

Personalisation: ideal yoga--correct items and dose to phenotype (autonomic, cognitive, inflammatory) will need predictive biomarkers and responder measures.

Durability: To assess maintenance and optimal-dose to achieve persistent resilience, longitudinal follow-ups should be done after 6-12 months.

Practical Recommendations

Frequency and Dose: proceed as 3-5 sessions/week, 45-60 min mixes of asana (light-moderate level of effort), coherent slow breathing (~6 breaths/min), 10-20 min stays of focused meditation or body scan.(3, 7, 16)

Monitoring: Following programs: Resting HR, HRV (RMSSD/HF), morning/evening perceived stress, sleep quality, and (where possible) salivary cortisol ≥8 weeks.(3, 7, 18)

Tailoring:

- **Hyperarousal profiles**: Focus on slow breaths (e.g. Nadi Shodhana, Bhramari), restorative postures, greater emphasis on the exhalation.(16, 27)
- **Cognitive-ruminative account**: Focused attention meditation, interoceptive training, and meta-awareness: focus on these activities.(5, 9)
- Cardiometabolic risk: Add dynamic sequences (e.g. Sun Salutations) to capacity, baroreflex-focused breathing, and isometric holds with relaxed breath.(3, 16)

Conclusion

Yoga exerts robust psychophysiological effects that mitigate stress through integrated modulation of autonomic function, HPA axis activity, immune-inflammatory pathways, and central neurocircuitry. Evidence demonstrates both immediate and sustained benefits across physiological and psychological domains, including improved HRV, reduced blood pressure and cortisol, enhanced BDNF, decreased pro-inflammatory markers, and strengthened prefrontal regulation of limbic responses. Standardized, quality-controlled protocols and clinician-instructor collaboration can facilitate safe, effective integration into clinical care. Future research should refine mechanistic models, personalize dosing by stress phenotype, and evaluate long-term outcomes in pragmatic settings. As a scalable, low-cost, and multi-target intervention, yoga is well-positioned as a cornerstone of contemporary stress management and preventive health strategies.

Conflict of interest: Nil

Funding: None

References

- 1. Estevao C. The role of yoga in inflammatory markers. Brain Behav Immun Health. 2022;20:100421.
- 2. Mishra B, Agarwal A, George JA, Upadhyay AD, Nilima N, Mishra R, et al. Effectiveness of Yoga in Modulating Markers of Immunity and Inflammation: A Systematic Review and Meta-Analysis. Cureus. 2024;16(4):e57541.
- 3. Pascoe MC, Thompson DR, Ski CF. Yoga, mindfulness-based stress reduction and stress-related physiological measures: A meta-analysis. Psychoneuroendocrinology. 2017;86:152-68.
- 4. Sarkar S, Sa B, Singh K, Gaur U, Bharatha A, Victor V, et al. Psychophysiological Effects of Yoga on Stress Management among Medical and Allied Health Professional Students During COVID-19 Pandemic: A Narrative Review. Advances in Human Biology. 2021;11(Suppl 1).
- 5. van Aalst J, Ceccarini J, Demyttenaere K, Sunaert S, Van Laere K. What Has Neuroimaging Taught Us on the Neurobiology of Yoga? A Review. Frontiers in Integrative Neuroscience. 2020; Volume 14 2020.
- 6. Cahn BR, Goodman MS, Peterson CT, Maturi R, Mills PJ. Yoga, Meditation and Mind-Body Health: Increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat. Frontiers in Human Neuroscience. 2017;Volume 11 2017.
- 7. Vinay AV, Venkatesh D, Ambarish V. Impact of short-term practice of yoga on heart rate variability. Int J Yoga. 2016;9(1):62–6.

- 8. Froeliger B, Garland EL, McClernon FJ. Yoga meditation practitioners exhibit greater gray matter volume and fewer reported cognitive failures: results of a preliminary voxel-based morphometric analysis. Evid Based Complement Alternat Med. 2012;2012:821307.
- 9. Doll A, Hölzel BK, Mulej Bratec S, Boucard CC, Xie X, Wohlschläger AM, et al. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity. NeuroImage. 2016;134:305-13.
- 10. Goodrick M, Kolosovas-Machuca ES, Guevara E. Yoga Asana Increases Prefrontal Cortex Activity and Reduces Resting-State Functional Connectivity. Complementary Medicine Research. 2025;32(3):214–23.
- 11. You T, Ogawa EF. Effects of meditation and mind-body exercise on brain-derived neurotrophic factor: A literature review of human experimental studies. Sports Medicine and Health Science. 2020;2(1):7–9.
- 12. Gomutbutra P, Yingchankul N, Chattipakorn N, Chattipakorn S, Srisurapanont M. The Effect of Mindfulness-Based Intervention on Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Controlled Trials. Frontiers in Psychology. 2020; Volume 11 2020.
- 13. Tang R, Friston KJ, Tang Y-Y. Brief Mindfulness Meditation Induces Gray Matter Changes in a Brain Hub. Neural Plasticity. 2020;2020(1):8830005.
- 14. Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011;191(1):36-43.
- 15. Babu MGR, Kadavigere R, Koteshwara P, Sathian B, Rai KS. Rajyoga meditation induces grey matter volume changes in regions that process reward and happiness. Scientific Reports. 2020;10(1):16177.
- 16. Tyagi A, Cohen M. Yoga and heart rate variability: A comprehensive review of the literature. Int J Yoga. 2016;9(2):97–113.
- 17. Rajeswari P, Madhuri S, R R. Effect of Yoga on Resting Heart Rate and Blood Pressure: A Controlled Physiological Study. European Journal of Cardiovascular Medicine. 2024;14(1):1198-204.
- 18. Örün D, Karaca S, Arıkan Ş. The Effect of Breathing Exercise on Stress Hormones. Cyprus Journal of Medical Sciences. 2021;6(1):22–7.
- 19. Maheshkumar K, Dilara K, Ravishankar P, Julius A, Padmavathi R, Poonguzhali S, et al. Effect of six months pranayama training on stress-induced salivary cortisol response among adolescents-Randomized controlled study. EXPLORE. 2022;18(4):463–6.
- 20. Fincham GW, Strauss C, Montero-Marin J, Cavanagh K. Effect of breathwork on stress and mental health: A meta-analysis of randomised-controlled trials. Scientific Reports. 2023;13(1):432.
- 21. Gautam S, Kumar R, Kumar U, Kumar S, Luthra K, Dada R. Yoga maintains Th17/Treg cell homeostasis and reduces the rate of T cell aging in rheumatoid arthritis: a randomized controlled trial. Scientific Reports. 2023;13(1):14924.
- 22. Tripathi MN, Kumari S, Ganpat TS. Psychophysiological effects of yoga on stress in college students. J Educ Health Promot. 2018;7:43.
- 23. Mandlik GV, Siopis G, Nguyen B, Ding D, Edwards KM. Effect of a single session of yoga and meditation on stress reactivity: A systematic review. Stress and Health. 2024;40(3):e3324.
- 24. Lee M, Moon W, Kim J. Effect of yoga on pain, brain-derived neurotrophic factor, and serotonin in premenopausal women with chronic low back pain. Evid Based Complement Alternat Med. 2014;2014:203173.
- 25. Büssing A, Michalsen A, Khalsa SB, Telles S, Sherman KJ. Effects of yoga on mental and physical health: a short summary of reviews. Evid Based Complement Alternat Med. 2012;2012:165410.
- 26. Katla N, Ramsahaye A, Thulasi A, Ilavarasu J, Jagannathan A, Bhargav H, et al. Yoga Module Development and Validation: A Systematic Review with Methodological Guidelines. Int J Yoga. 2022;15(3):175-86.
- 27. Bentley TGK, D'Andrea-Penna G, Rakic M, Arce N, LaFaille M, Berman R, et al. Breathing Practices for Stress and Anxiety Reduction: Conceptual Framework of Implementation Guidelines Based on a Systematic Review of the Published Literature. Brain Sci. 2023;13(12).